Smarter Work Zones Webinar Series

Webinar #8: Integrating Project Coordination & Technology Applications: Iowa DOT

Martha Kapitanov, Todd Peterson, Mike Jackson, and Tara Kramer

December 15, 2015 1:00-2:30pm EST

Efficiency through technology and collaboration

Smarter Work Zones Introduction and Today's Speakers

Today's Speakers

Martha C. Kapitanov
Transportation Specialist
FHWA Office of Operations

Todd Peterson, P.E., PTOE

Transportation Specialist
FHWA Office of Operations

Mike Jackson
State Traffic Operations Engineer
Iowa DOT

Tara Kramer, P.E., PTOE

Traffic Manager

HDR

Smarter Work Zones (SWZ) Webinar Series

- This is the eighth in a series of <u>bi-weekly</u> SWZ webinars
- Topics based on what matters most to you!
- Previous Webinars include:
 - Webinar #1: A Comprehensive Overview of the SWZ Initiative (9/9/2015)
 - Webinar #2: Implementing Technology Application Solutions (9/29/2015)
 - Webinar #3: SWZ Corridor-Based Project Coordination (10/15/15)
 - Webinar #4: SWZ Technology Showcase Queue Warning Systems (10/26/15)
 - Webinar #5: SWZ Program-Based Project Coordination (11/2/15)
 - Webinar #6: Technology Application Case Studies: Variable Speed Limit and Dynamic Lane Merge (11/12/15)
 - Webinar #7: Work Zone Project Coordination Guide and Examples (12/2/15)
- Recordings and materials for previous webinars are available on The National Work Zone Safety Information Clearinghouse website: https://www.workzonesafety.org/swz/webinars
- Coming Up:

January 2016	1/21	Webinar #9: Technology Application Strategies: Performance Measurement and System Health Monitoring
February 2016	2/18	Webinar #10: Designing ITS Systems Based on Identified Needs

Purpose of Today's Webinar

Provide a comprehensive overview of lowa DOT's statewide Traffic Critical Project Program and discuss real-world examples of successful SWZ project coordination and technology application strategies in lowa.

Topics include:

- SWZ Project Coordination and Technology Application Initiatives
 - Show how the SWZ Project Coordination and Technology Application initiatives can be used by agencies to enhance their current work zone management practices
- 2. Iowa DOT Statewide Traffic Critical Project Program
 - Provide an overview of Iowa DOT's Intelligent Work Zone efforts
 - Discuss how Technology Application Strategies have helped with Project Coordination
- 3. Iowa DOT Council Bluffs Interstate System Improvement project
 - Provide an overview of Iowa DOT's Council Bluffs Interstate System Improvement
 - Discuss how the Project Coordination and Technology Application Initiatives have helped
 - Minimize conflicts
 - Optimize project schedules
 - Improve overall work zone safety and mobility in Iowa

Smarter Work Zones SWZ INITIATIVES

What are Smarter Work Zones (SWZ)?

Innovative strategies designed to optimize work zone safety and mobility

- Policies and practices used to incrementally and continuously improve WZ operations
- Tools to reduce WZ crashes and delays
- Tools to enhance WZ management strategies

Two Identified SWZ Initiatives:

Project Coordination

Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions

Technology Application

Deployment of Intelligent Transportation Systems (ITS) for dynamic management of work zone traffic impacts, such as queue and speed management

Project Coordination – What is it?

Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions to minimize work zone traffic impacts.

Benefits:

- For transportation agencies include:
 - Ability to reduce and manage traffic disruptions from road work
 - Earlier identification of project impacts
 - Dynamic adjustments to schedule
 - Improved communications within and cross agencies
 - Cost savings
- From the driver's perspective:
 - Fewer numbers of work zones and street cuts
 - Better quality road surfaces
 - Increased customer satisfaction

Source: FHWA

SWZ Project Coordination Goals:

Goal 1

By December 2016, 25 State DOTs have incorporated work zone project coordination strategies into agency documentation and business processes.

What does this mean?

- Review of:
 - Existing PC-related policies/practices to identify strengths and weaknesses
 - Other agencies' PC-related best practices
- Identify and implement of SWZ PC strategies
- Develop agency documentation and business processes

SWZ Project Coordination Goals:

Goal 2

By December 2016, 5 State DOTs have volunteered to pilot the Work Zone Implementation Strategies Estimator (WISE) software.

What does this mean?

- Use WISE tool to optimize project schedules and analyze mitigation strategies to minimize work zone traffic impacts
- Pilot, evaluate, suggest enhancements, and demonstrate WISE's value for work zone management

Technology Application – What is it?

Deployment of ITS for dynamic management of work zone traffic impacts, such as queue and speed management to **provide actionable information** to drivers and traffic managers.

Capabilities include:

- Improving driver awareness
- Providing dynamic and actionable guidance to drivers
- Enhancing tools for on-site traffic management

Source: FHWA

SWZ Technology Application Goals:

Goal 1A

By December 2016, 35 State DOTs have implemented business processes for work zone ITS technologies as identified in the Work Zone ITS Implementation Guide

What does this mean?

 Well-documented agency policies and processes to streamline consideration and use of work zone ITS technologies to minimize traffic impacts

SWZ Technology Application Goals:

Goal 1B

By December 2016, 35 State DOTs have utilized at least one work zone ITS technology application for dynamic management of work zone impacts

What does this mean?

- Consideration of the six step process explained in the WZ ITS implementation guide to plan and implement ITS strategies
- Identify and use ITS strategies such as speed and/or queue management on at least one project for dynamic management of work zone impacts

Smarter Work Zones Iowa DOT's Intelligent Work Zones on Traffic Critical Projects

CTRE Traffic Operations Laboratory

Mike Jackson
State Traffic Operations Engineer, Iowa DOT

Neal Hawkins, CTRE Director

Traffic Critical Projects (TCP)

- Projects that can be repeatedly or quickly lead to significant travel delays
- Multi-lane highways (interstates, freeways, expressways over 17,000 vehicles/day)
- Border Bridges
- District Inputs

TCP Program Objectives

- Focused on:
 - Improving traffic safety in work zones
 - Maintaining traffic mobility
 - Providing high quality traveler information
- TCP "Features"
 - Incorporation of traffic mitigation elements into project design
 - Intelligent Work Zones (IWZ)
 - Traffic Incident Management planning

IWZ Resources

- Statewide Traffic Operations Center (TOC)
- Existing Intelligent Transportation Systems (ITS) Devices
 - Cameras, sensors, dynamic message signs (DMS)
- ATMS Software (TransSuite)
 - "Queue Detection"
- ITS Communication Networks
- Integration of Rental (Portable ITS) Devices

2014 ITS/IWZ Solutions

- Expanded monitoring
 - Portable cameras & traffic sensors
- Driver information
 - Portable DMS
- Queue detection & warning

Portable Cameras

- Axis pan-tilt-zoom
- Great within reach of ITS communications network
 - Same as permanent cameras
 - On 511ia.org
- Less useful on cellular modems
 - New cellular options

Portable Traffic Sensors

Source: Iowa DOT

Source: Iowa DOT

- Wavetronix, side-fire radar
- Same as our permanent sensors
- Traffic counts & speeds every 20 seconds

Portable DMS

Source: Iowa DOT

- Statewide TOC has controlled rentals since 2013
- Temporarily mapped using GPS in modems

Intelligent Work Zone Coordination

- Statewide TOC
 - 24/7 operation
 - Camera, sensor, and DMS management

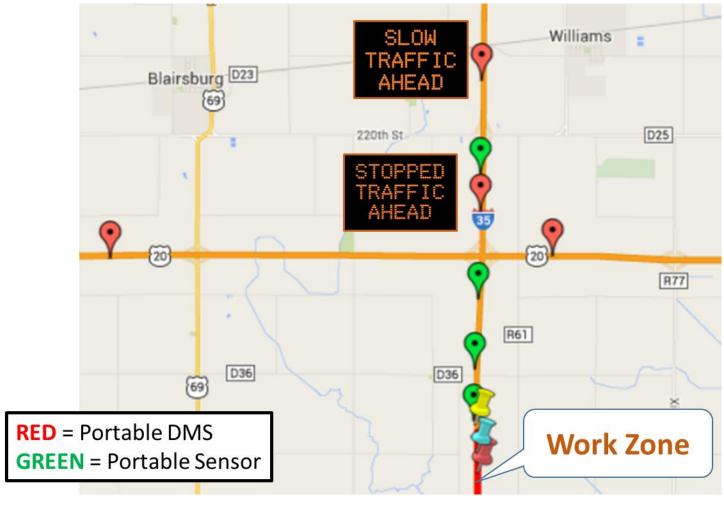
Source: Iowa DOT

Source: Iowa DOT

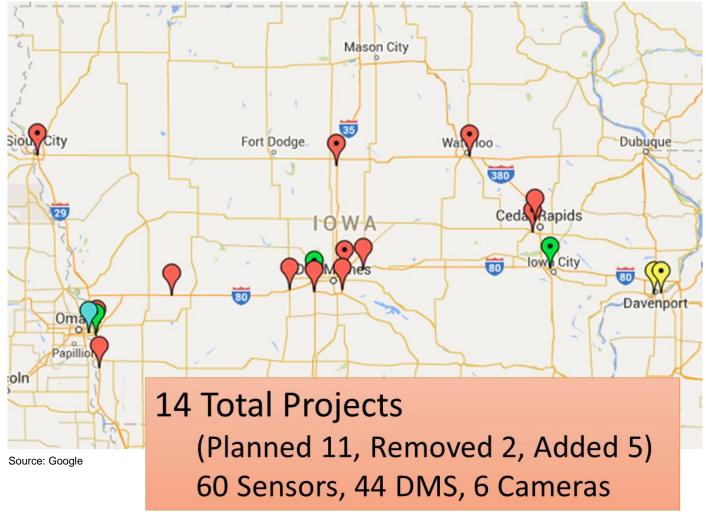
IWZ Team

- SRF Consultants: Writing contract and managing projects
- Street Smart Rentals: Statewide qualifications and cost-based IWZ device services contract
- TransCore: ATMS & Integration support
- Schneider/Telvent: Traffic Operations Center
- InTrans: Evaluation and analysis

Source: Street Smart Rentals



Source: Iowa State University


Queue Detection Systems- Southbound I-35


Source: Google

2014 IWZ Locations

2015 Traffic Critical Projects

Red = IWZ & TIM Orange = IWZ Yellow = TIM

CTRE 2015 Evaluation (1 of 2)

- Used performance measures developed from the 2014 evaluation
- Need for real-time monitoring
- Creating online portal to see/monitor work zone

Traveler Delay

Because sensors were only placed on the approaches to the work zone, the delay was calculated before the vehicle entered the work zone. Because of this, some performance measures are very low and would be higher if the delay was calculated over the entire work zone.

	Northbound	Southbound
Total Delay (Vehicle Hours)	58,473	55,917
Average Delay (Minutes/Vehicle)	0.38	0.39
Maximum Delay (Minutes)	15.3	14.7
Total Delay – when a queue is present (Vehicle Hours)	34,068	45,064
Average Delay – when a queue is present (Minutes/Vehicle)	3.1	3
% of vehicles experiencing delay > 10 minutes	0.2%	0.2%
% of vehicles with delay > 10 minutes in queue	3.4%	1.8%

Travel Time Reliability

Similar to delay, no sensor data was collected through the work zone so the travel time reliability was not able to be calculated for the entire work zone.

Safety

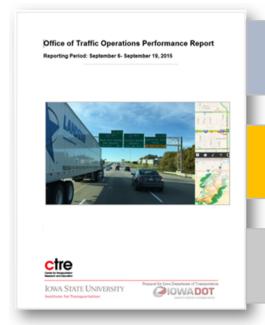
Crash data was not available when contacting the project engineer. In 2015, a weekly summary of crash and location would be needed to determine the safety performance measures.

CTRE 2015 Evaluation – Traffic Queueing (2 of 2)

Work Zone Project	I-35 and	d Iowa 5	I-35 Hamil	ton County	US 65 Des Moines River	I-80 near DeSoto
Direction	I-35 NB	Iowa 5 WB	I-35 NB	I-35 SB	US 65 EB	I-80 EB
Event Threshold		10	40		40	40
Number of Events – Total	1	16		09	1	16
Number of Events – By Direction	11	5	100	109	1	16
Number of Days with Events	5	4	46	42	1	8
Average Duration of each event (minutes)	14.1	23	28.6	33.4	10	49.4
Median Duration of each event (minutes)	10	20	5	10	10	12.5

Work Zone Project	I-35 and Iowa 5		I-35 Hamilton County		US 65 Des Moines River	I-80 near DeSoto
Direction	I-35 NB	Iowa 5 WB	I-35 NB	I-35 SB	US 65 EB	I-80 EB
Overall Average Queue Length (miles)	0.9	0.8	1.5	1.1	0.25	1.2
Average Max Queue Length of each event (miles)	1.0	1.0	0.8	0.2	0.3	1.0
Median Max Queue Length of each event (miles)	1	0.7	0.4	0	0.3	0.8
Overall Max Queue Length of each event (miles)	2.2	2.5	5.5	3.2	0.3	0.8
Number of Times Queue Exceeded Furthest sensor (miles)	1	0	2	2	0	1
Percentage of queue >1 mile	41.9%	26.1%	77.9%	74.3%	0.0%	33.5%

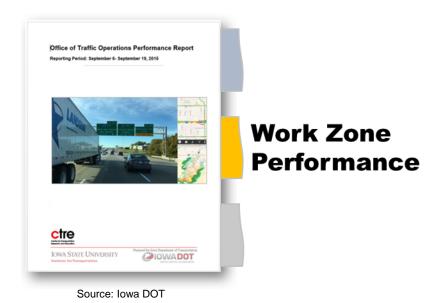
Work Zone Project	I-35 and Iowa 5		I-35 Hamilton County		US 65 Des Moines River	I-80 near DeSoto
Direction	I-35 NB	Iowa 5 WB	I-35 NB	I-35 SB	US 65 EB	I-80 EB
Total Vehicles	345,152	330,612	261,577	209,013	860,000	297,987
Amount of Traffic encountering a queue	3,417	1,620	55,062	74,710	86	21,873
Percentage of traffic encountering a queue	0.99%	0.49%	7.2%	10.54%	0.01%	7.34%
Percentage of Time when queue present	0.38%	0.29%	3.10%	3.95%	0.01%	2.61%



Traffic Critical Work Zone Performance Reporting

OTO Support

Source: Iowa DOT


Statewide Performance

Work Zone Performance

Quality Assurance

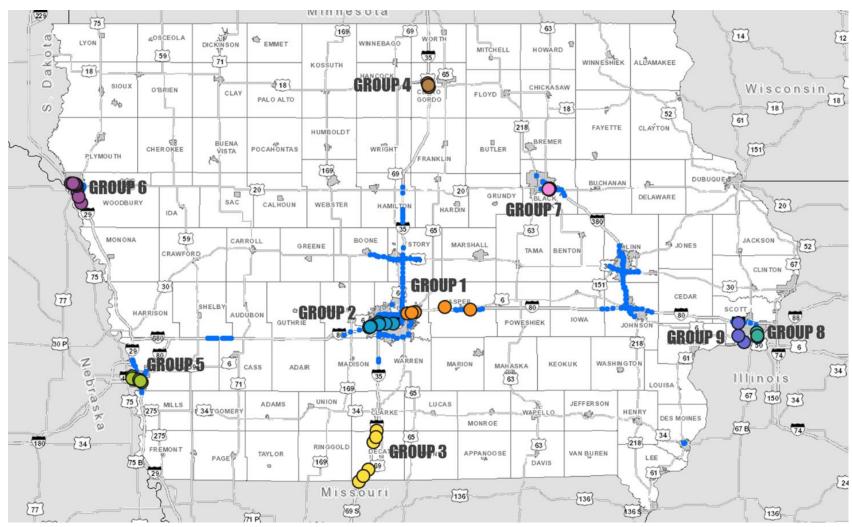
FY16 OTO Support

- ☐ Work Zone Locations
- □ Performance Summary
- ☐ Exposure Performance
- □ Queuing Performance
- □ Delay Performance
- ☐ Heat Maps
- □ Data Completeness

Performance Measures Categories

- □ Exposure
- □ Traffic queuing
- ☐ Traveler delay

Source: Iowa DOT



Work Zones and Related Routes (1 of 2)

Work Zones							
Group	IWZ	Roadway and Location Reference	Begin Date	Estimated End Date	Roadways		
1	1.3	I-80 from Des Moines to Newton	4/13/2015	5/26/2016	180		
1	1.4	I-80/US-65 in Des Moines	3/30/2015	11/25/2015	180		
	1.2	I-235 in Des Moines	7/20/2015	10/30/2015	7.00 17.005		
2	1.5	West mix-master in Des Moines	6/12/2015	10/2/2015	I-80 and I-235, I-35		
	4.2	I-80 at Alice's Road near DSM	3/16/2015	11/20/2015	1-33		
3	5.1	I-35 at MO Border	6/22/2015	11/15/2015	I-35		
4	2.2	I-35 near Mason City	4/1/2015	11/6/2015	I-35		
5	4.1	I-80/29 in Council Bluffs	3/30/2015	11/25/2015	I-29, I-80		
	3.1	I-29 in Sioux City	3/23/2015	11/1/2015			
6	3.2	I-29 in Sioux City	3/11/2015	11/1/2015	I-29, US 20		
	3.3	I-29 in Sioux City	4/15/2015	11/1/2015			
7	2.1	I-380 in Waterloo	5/18/2015	9/15/2015	US 20 and I-380		
8	6.2	I-74 in the Quad Cities	4/13/2015	11/1/2015	I-74		
9	6.3	I-280 in the Quad Cities	3/30/2015	11/1/2015	I-280		

Work Zones and Related Routes (2 of 2)

IWZ Performance Summary

		Exposure	Event		Traffic Queue		Delay	
IWZ Group and Related Roadways	Direction	ADT (1000 veh)	Number of Events	Max Duration (min)	Avg Duration (min)	Max Length (mi)	Avg. Length (mi)	Avg. Delay (min/veh/10mi)
Group 1 - 1.3 - I80	EB	202.05	90	295	21.39	7.80	1.21	0.17
Group 1 - 1.3 - I80	WB	201.76	178	395	21.29	12.40	1.34	0.40
Group 1 - 1.4 - 180	EB	391.78	165	405	25.76	6.90	1.20	0.50
Group 1 - 1.4 - 180	WB	37 1.57	92	440	21.47	6.90	0.98	0.37
Group 2 - 1.2 1.5 4.2 - I80/I235	EB	523.60	307	450	32.07	13.80	0.80	0.75
Group 2 - 1.2 1.5 4.2 - I80/I235	WB	627.48	184	430	15.71	13.80	0.97	0.60
Group 2 - 1.5 - 135	NB	38 5.43	21	245	27.14	3.80	1.02	0.08
Group 2 - 1.5 - I35	SB	389.70	62	295	18.23	3.80	0.81	0.24
Group 3 - 5.1 - I35	NB	104.60	41	20	5.49	7.10	1,58	0.23
Group 3 - 5.1 - 135	SB	113.85	81	15	6.17	11.70	2.12	0.55
Group 4 - 2.2 - 135	NB	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Group 4 - 2.2 - 135	SB	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Group 5 - 4.1 - I29	NB	217.98	209	105	12.15	4.90	0.60	0.86
Group 5 - 4.1 - I29	SB	236.09	392	275	3 3.44	3.10	0.65	0.88
Group 5 - 4.1 - I80	EB	3 01.33	55	85	12.00	1.40	0.44	0.35
Group 5 - 4.1 - 180	WB	3 14.22	100	60	9.30	2.10	0.37	0.35
Group 6 - 3.1 3.2 3.3 - I29	NB	234.80	381	660	22.35	10. 70	0.88	1.80
Group 6 - 3.1 3.2 3.3 - I29	SB	212.21	679	670	25.00	10. 70	0.64	1.54
Group 6 - 3.1 3.2 3.3 - US20	EB	123.29	51	555	50.29	3.60	0.68	0.30
Group 6 - 3.1 3.2 3.3 - US20	WB	128.43	25	550	58.40	2.90	1.02	0.22
Group 7 - 2.1 - us20/I380	WB	163.32	84	455	20.89	9 .60	0.77	0.18
Group 7 - 2.1 - us20/1380	EB	170.59	130	455	29.92	9 .60	0.85	0.24
Group 8 - 6.2 - 174	SB	3 17.23	306	580	20.26	6.80	0.41	0.52
Group 8 - 6.2 - 174	NB	273.91	602	1440	28.56	6.70	0.27	0.72
Group 9 - 6.3 - I280	SB	132.75	68	425	16.18	7.40	2.00	0.79
Group 9 - 6.3 - 1280	NB	126.53	258	465	9.75	7.40	1.61	1 .43

^{*} All calculations are made assuming the provided sensor data is correct.

An event is defined as the occurrence of speed lower than 45mph on any of the segments in the work zone.

Bi-weekly Reports Daily Tracking Reporting Day 23-Aug-2015 \(\sum \) Missing data by time of day Sensor#1 138.2 Sensor#2 Eastbound Travel Direction Sensor#3 139.6 Sensor#4 Begin Work Zone (EB) Sensor#5 Sensor#6 Missing data by Sensor 141.44 Sensor#7 Missing data by Sensor Sensor#8 Sensor#9 Inconsistent data over time 143.46 Sensor#10 End Work Zone (EB) Sensor#11 Consistent data over time Sensor#12 145.83 Sensor#13 6:00pm 24-hrs Low Speeds "Red" Group 2 - 1.2 1.5 4.2 - 180 1235 dir1: weekday average from 2015-10-19 to 2015-10-High Speeds "Green" I-80 IWZ 4061 EB 2 Missing Data "White" I-80 IWZ 4063 EB_2 Missing data summary (red) IWZ 3071 EB I-80 IWZ 4071 EB 2 IWZ 3066 EB Source: Iowa DOT I-80 IWZ 4038 EB 2 IWZ 3062 EB I-80 EB at WEST MESSAGE SIGN-EB I-80 WB at JORDAN CRK PKWY-EB I-80 EB at JORDAN CRK PKWY-EB I-80 EB at I-35 SB EXIT-EB I-235 EB to VALLEY WEST-EB I-235 EB from Vly West Dr-EB I-235 WB E of 22nd STREET-EB-I-235 EB @ 8th Street Loop-EB-I-235 EB EAST OF 63RD-EB

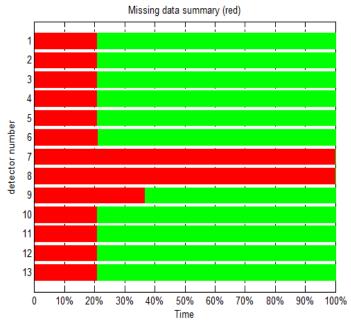
I-235 at 42nd STREET EB-EB
I-235 @ Sign Truss-EB
I-235 EB 28th STREET-EB
I-235 EB to MLK-EB

3:00am 6:00am

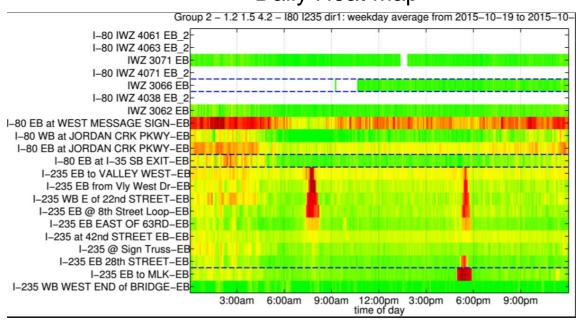
9:00am 12:00pm 3:00pm 6:00pm 9:00pm time of day

I-235 WB WEST END of BRIDGE-EB

50%

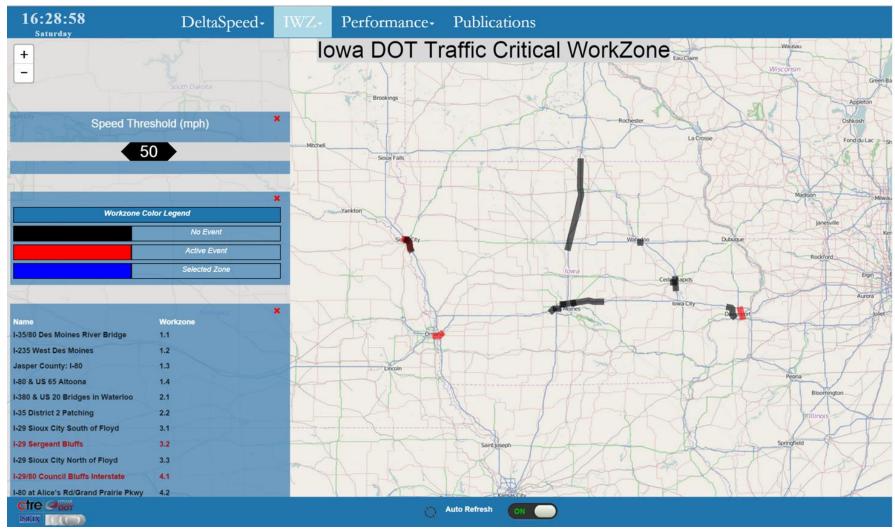

Time

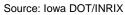
60% 70% 80% 90%


10% 20% 30% 40%

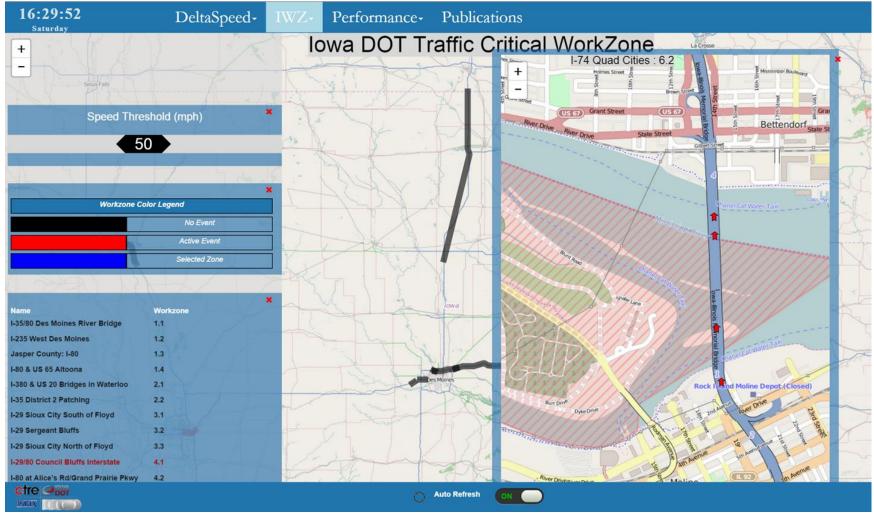
Daily Reports

Data Completeness

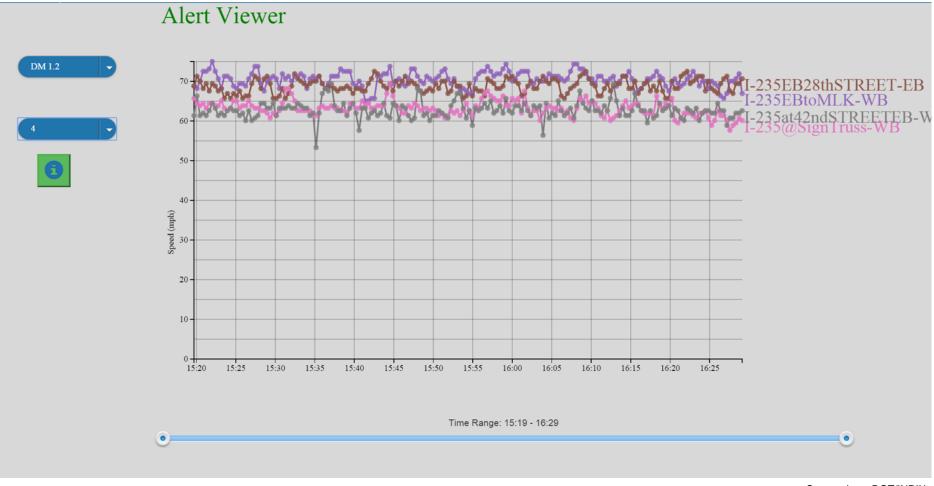

Daily Heat Map



Source: Iowa DOT Source: Iowa DOT


Real-time Monitoring




Locating Queues

Monitoring Alerts

Future of TCP in Iowa

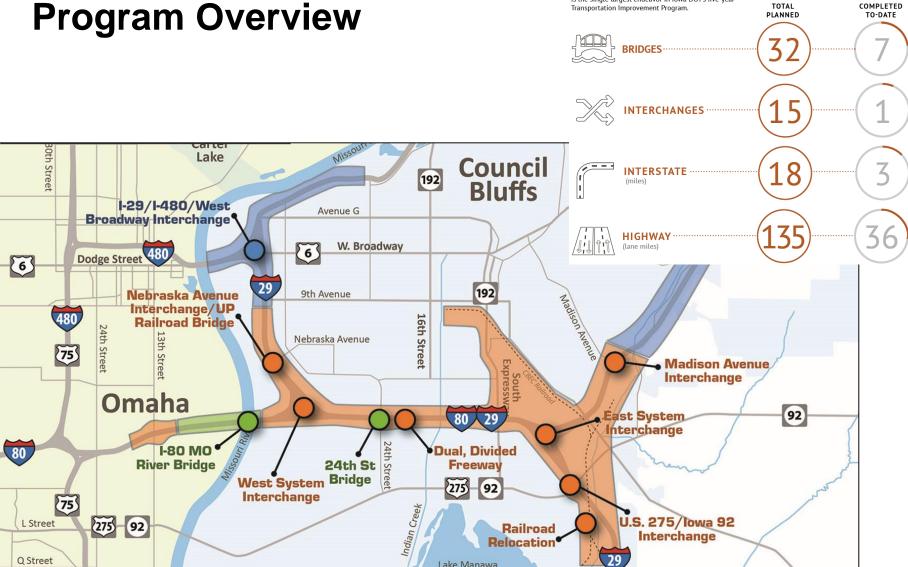
- Evaluate effectiveness of each strategy
- Expand to other forms of IWZ
- Provide information by project type

For more information:

Mike Jackson Iowa DOT

michael.Jackson@dot.iowa.gov

Neal Hawkins CTRE


hawkins@iastate.edu

Smarter Work Zones Council Bluffs Interstate System Reconstruction: Keeping Traffic Moving

Program Overview

is the single largest endeavor in Iowa DOT's five-year

Plan View - Dual Divided System



Dual Divided System Cross-Section

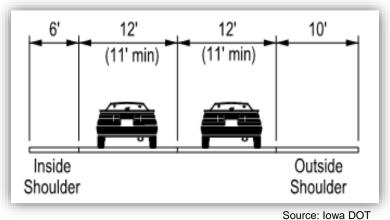
Current and Future Projects

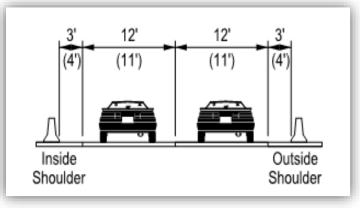
Federal Register: Work Zone Safety and Mobility (23 CFR PART 630)

- Each State shall implement a policy for the systematic consideration and management of work zone impacts on all Federal-aid highway projects
 - Significant projects require a Transportation Management
 Plan

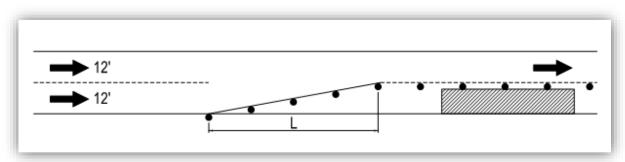
Transportation Management Plan

- Why you see what you see in the Traffic Control Plans and Contract Documents
 - Goals and Objectives
 - Traffic Control Plan
 - Traffic Operations Plan
 - Intelligent Work Zones
 - Traffic Incident Management
 - Public Information Plan


Goals and Objectives


- Safety of the traveling public and construction workers
- Efficient traffic flow along the interstate
- Minimize impacts to local access within the project area

Traffic Control Plan

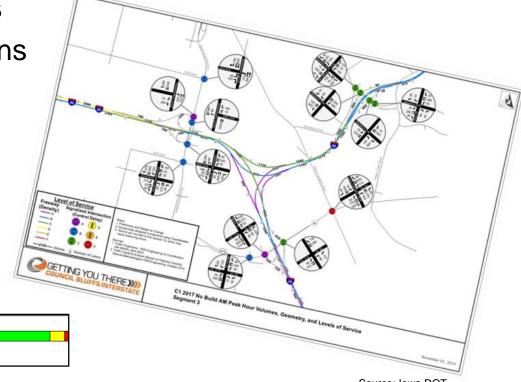


Chute Design

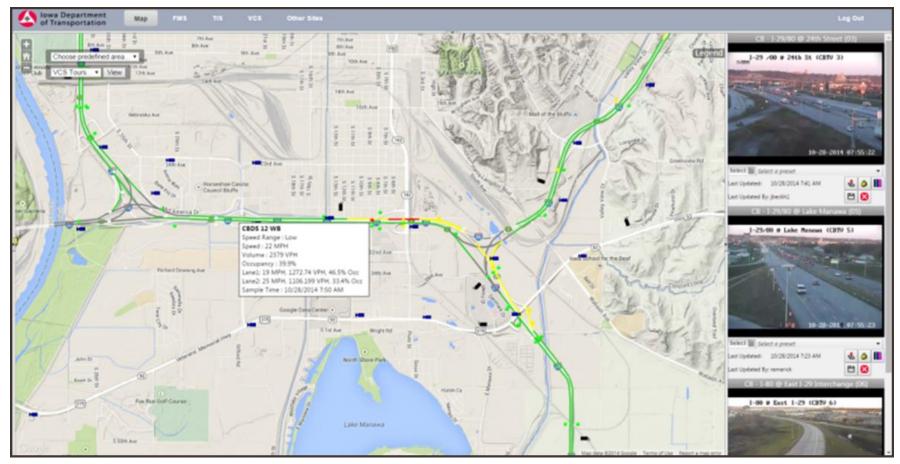
Source: Iowa DOT

Lane Widths

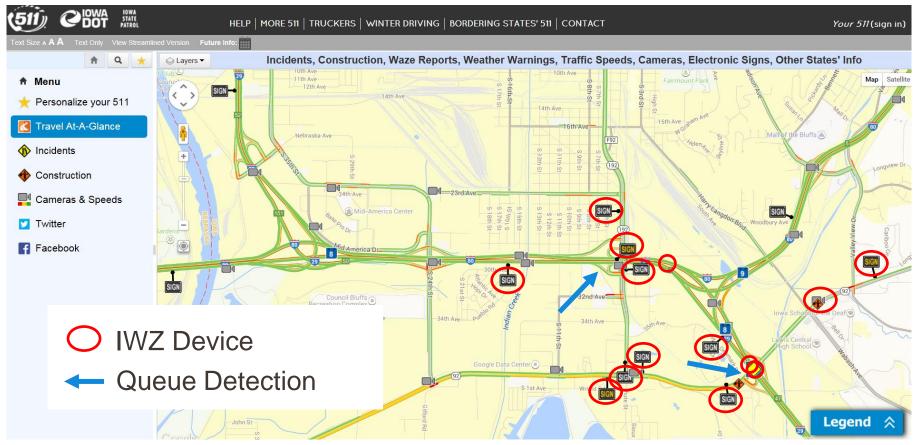
2 Lanes of Traffic



Taper Rates

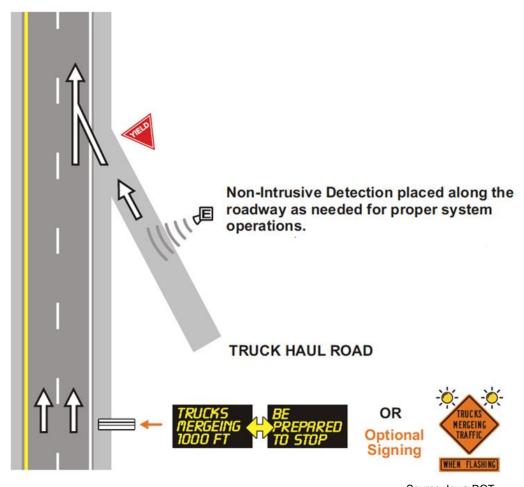

Traffic Operations Plan

- Operational Analysis (TransModeler)
 - Incentives / Disincentives
 - Iterative Design Process
 - Identifying IWZ Needs
- Signal Timing Modifications
 - Closures
 - Construction Planning

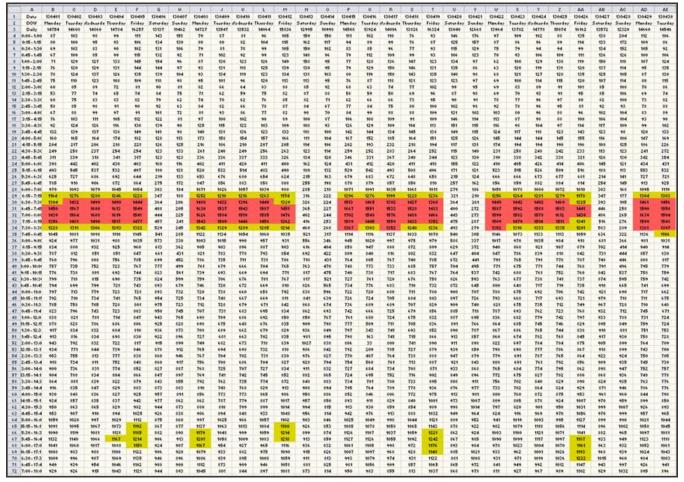


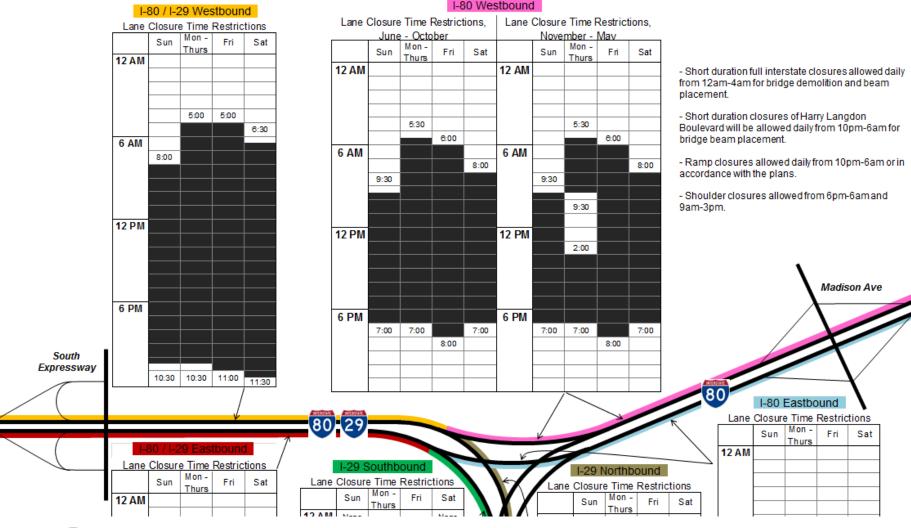
Intelligent Transportation System

Portable ITS Devices/Intelligent Work Zones

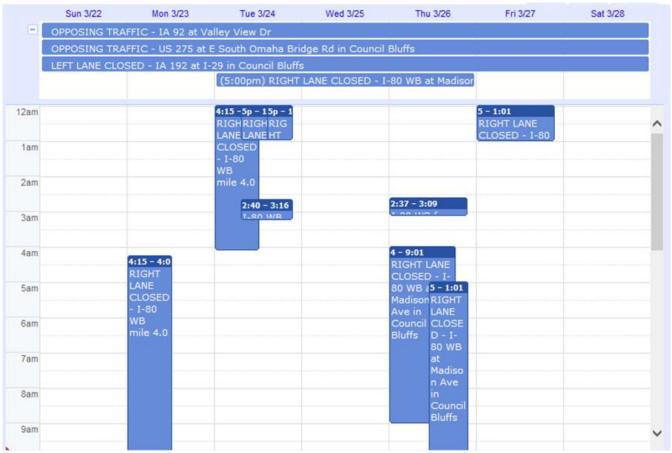


Future IWZ Applications

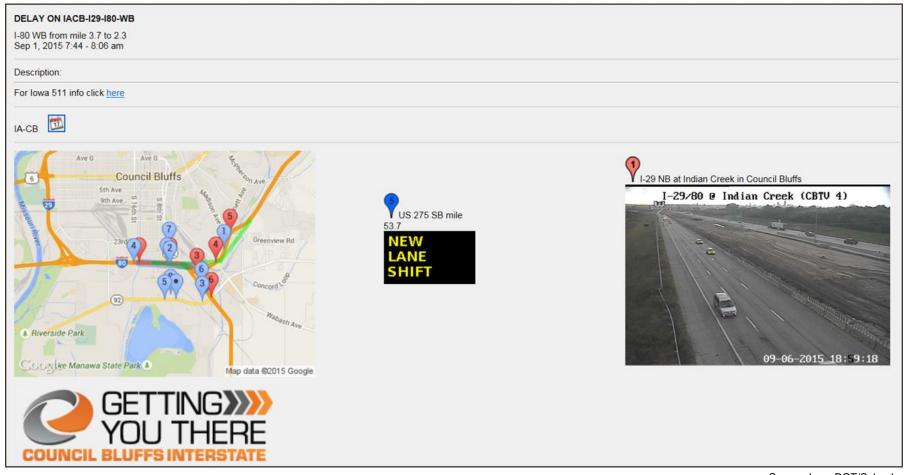

Trucks entering freeway

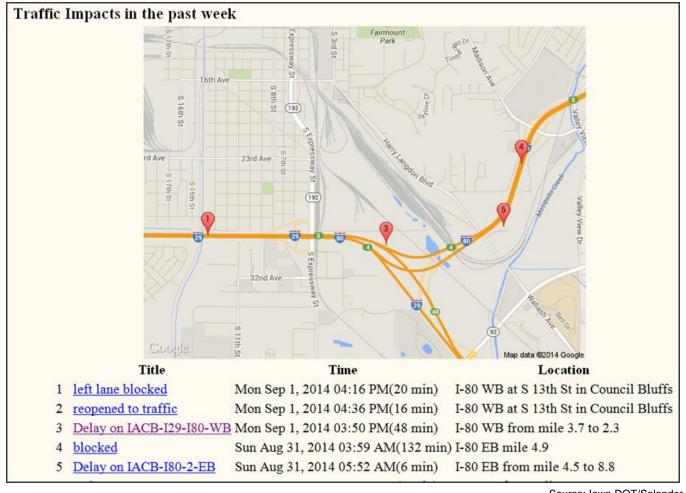

Traffic Monitoring

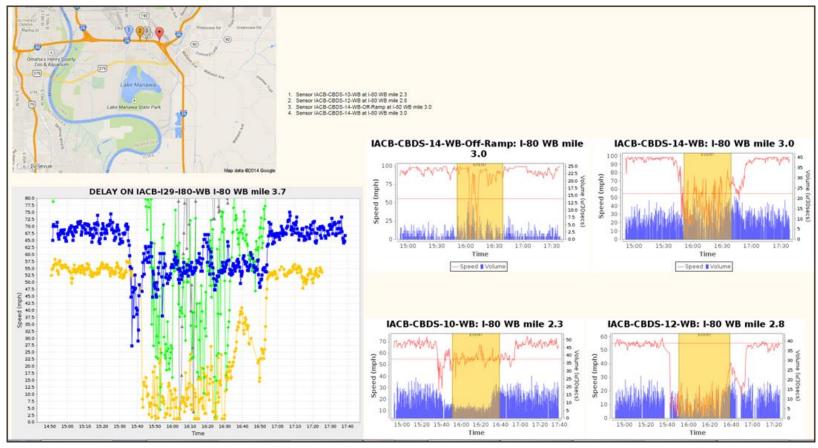
Work Restrictions (based on sensor data)



Work Restrictions – Traffic Control Plan

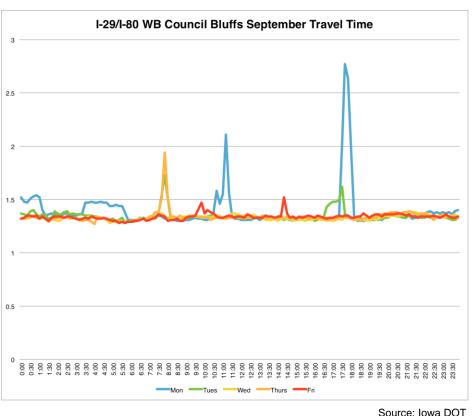

Traffic Management – Lane Closure Coordination

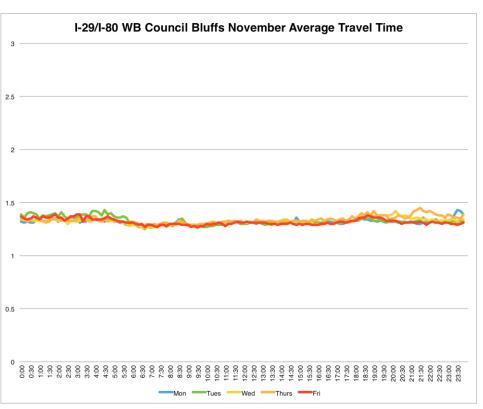

Traffic Monitoring and Performance: Salander


Traffic Monitoring: Salander (1 of 3)

Source: Iowa DOT/Salander

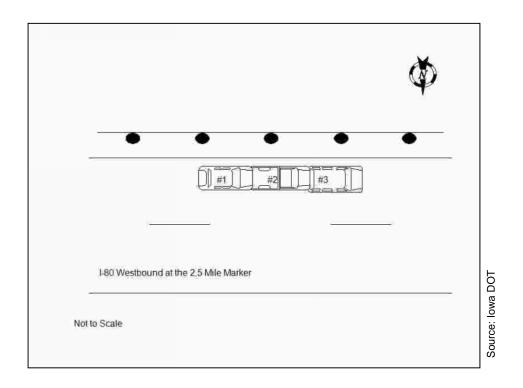
Traffic Monitoring: Salander (2 of 2)




Source: Iowa DOT/Salander

Traffic Monitoring: Performance

Daily Travel Time: I-29 NB / I-80 WB



ce: Iowa DOT Source: Iowa DOT

Traffic Monitoring: Performance

- Crash information
 - Weekly reports from Council Bluffs Police Department
 - Iowa State Patrol Reports Online

Traffic Incident Management (TIM; 1 of 2)

- Revise TIM diversion plans for construction
- DMS message sets established for diversion routes
- Monthly stakeholder meetings
- Incident debrief Inrix data, ITS data, Salander summaries and cameras

Traffic Incident Management (TIM; 2 of 2)

For More Information

Mike Jackson, Iowa DOT (515) 239-1192

michael.jackson@dot.iowa.gov

Tara Kramer, HDR (402) 399-1322

tara.kramer@hdrinc.com

Smarter Work Zones FHWA RESOURCES

SWZ Interactive Toolkit Available!

https://www.workzonesafety.org/SWZ/main

Other Resources – Project Coordination

FHWA	 FHWA Work Zone Mobility and Safety Program – Project Coordination http://www.ops.fhwa.dot.gov/wz/construction/crp/index.htm FHWA Work Zone Mobility and Safety Program – Peer-to-Peer Program http://www.ops.fhwa.dot.gov/wz/p2p/index.htm
TRB SHRP2	WISE Software Users Guide http://onlinepubs.trb.org/onlinepubs/shrp2/SHRP2 S2-R11-RW-2.pdf
NCHRP	NCHRP Synthesis 413: Techniques for Effective Highway Construction Projects in Congested Urban Areas http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp syn 41.pdf
Others	Highway Construction Coordination to Minimize Traffic Impacts http://planning.transportation.org/Documents/8-36/NCHRP8-36(56)FinalReport.pdf
WSDOT Example Documents	 Data Sharing Agreement between Washington State DOT and Seattle DOT https://www.workzonesafety.org/files/documents/SWZ/WSDOT-SDOT_data_sharing_agreement.pdf Washington State DOT Memorandum of Understanding – Construction Traffic Coordination and Mitigation https://www.workzonesafety.org/files/documents/SWZ/MOU_10-25-09.pdf

Other Resources – Technology Application

FHWA

- FHWA Work Zone Mobility and Safety Program ITS and Technology http://www.ops.fhwa.dot.gov/wz/its/index.htm
- FHWA Work Zone Mobility and Safety Program Peer-to-Peer Program http://www.ops.fhwa.dot.gov/wz/p2p/index.htm
- Work Zone ITS Implementation Guide http://www.ops.fhwa.dot.gov/publications/fhwahop14008/fhwahop14008.pdf
- Work Zone ITS Case Studies
 http://www.ops.fhwa.dot.gov/publications/fhwahop14007/
- Work Zone ITS Overview Webinar http://www.ops.fhwa.dot.gov/wz/webinars/itsoverview013014/ullman/index.htm

Thanks for joining us!

Upcoming Events

- Webinar #9: Technology Application Strategies: Performance Measures and System Health Monitoring
 - Thursday, January 21, 2016, 1:00-2:30pm EST
- Webinar #10: Designing ITS Systems Based on Identified Needs
 - Thursday, February 18, 2016, 1:00-2:30pm EST
- Check The National Work Zone Safety Information Clearinghouse website for updates https://www.workzonesafety.org/SWZ/main

Questions or Comments?

Jawad Paracha (FHWA Operations, WZ Team)
 Jawad.Paracha@dot.gov

