• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

A Real-Time Computer Vision System for Workers’ PPE and Posture Detection in Actual Construction Site Environment

Author/Presenter: Moohialdin, Ammar; Lamari, Fiona; Marc, Miska; Trigunarsyah, Bambang
Abstract:

The real-time video detection model is yet a challenging, especially in detecting construction site workers and their PPE (helmet and safety gear) and postures, since the construction site environment consists multiple complications such as different illumination levels, shadows, complex activities, a wide range of personal protective equipment (PPE) designs and colours. This paper proposes a novel computer vision (CV) system to detect the construction workers’ PPE and postures in a real-time manner. Four different recording sessions have been carried out to build a dataset of 95 videos by using a novel design of site cameras. The PPE detection included eight different types of helmets and gears and the postures detection consisted of nine classes. The Python data-labelling tool was used to annotate the selected datasets and the labelled datasets were used to build a detection model based on the TensorFlow environment. The proposed method consists of two layers of decision trees, which was tested and validated on two videos of 2000 frames. The proposed model achieves high-performance results in both identification and recall ratios over 83% and 95%, respectively. It also achieved higher accuracy in classifying the postures over 72% and 64% in model testing and validation. The proposed model can promote potential improvements in the application of real-time video analysis in actual site conditions.

Source: 16th East Asia-Pacific Conference on Structural Engineering & Construction, Brisbane, Australia, December 3-6, 2019
Publication Date: 2019
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Computer Vision; Personal Protective Equipment; Road Construction Workers; Video Imaging Detectors; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute