• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

A Work Zone Simulation Model for Travel Time Prediction in a Connected Vehicle Environment

Author/Presenter: Wen, Xuejin
Abstract:

A work zone bottleneck in a roadway network can cause traffic delays, emissions and safety issues. Accurate measurement and prediction of work zone travel time can help travelers make better routing decisions and therefore mitigate its impact. Historically, data used for travel time analyses comes from fixed loop detectors, which are expensive to install and maintain. With connected vehicle technology, such as Vehicle-to-Infrastructure, portable roadside unit (RSU) can be located in and around a work zone segment to communicate with the vehicles and collect traffic data. A PARAMICS simulation model for a prototypical freeway work zone in a connected vehicle environment was built to test this idea using traffic demand data from NY State Route 104. For the simulation, twelve RSUs were placed along the work zone segment and sixteen variables were extracted from the simulation results to explore travel time estimation and prediction. For the travel time analysis, four types of models were constructed, including linear regression, multivariate adaptive regression splines (MARS), stepwise regression and elastic net. The results show that the modeling approaches under consideration have similar performance in terms of the Root of Mean Square Error (RMSE), which provides an opportunity for model selection based on additional factors including the number and locations of the RSUs according to the significant variables identified in the various models. Among the four approaches, the stepwise regression model only needs variables from two RSUs: one placed sufficiently upstream of the work zone and one at the end of the work zone.

Publisher: Cornell University
Publication Date: 2018
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Connected Vehicles; Traffic Simulation; Travel Time; Work Zones

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute