• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • Events
  • About
  • Contact
  • Search
Publication

Bi-Level Optimization of Long-Term Highway Work Zone Scheduling Considering Elastic Demand

Author/Presenter: Li, Yang; Fan, Wei
Abstract:

Purpose
More and more work zone projects come with the needs of new construction and regular maintenance-related investments in transportation. Work zone projects can have many significant impacts socially, economically and environmentally. Minimizing the total impacts of work zone projects by optimizing relevant schedules is extremely important. This study aims to analyze the impacts of scheduling long-term work zone activities.

Design/methodology/approach
Optimal scheduling of the starting dates of each work zone project is determined by developing and solving using a bi-level genetic algorithm (GA)–based optimization model. The upper level sub-model is to minimize the total travel delay caused by work zone projects over the entire planning horizon, whereas the lower level sub-model is a traffic assignment problem under user equilibrium condition with elastic demand.

Findings
Sioux Falls network is used to develop and test the proposed GA-based model. The average and minimum total travel delays (TTDs) over generations of the proposed GA algorithm decrease very rapidly during the first 20 generations of the GA algorithm; after the 20th generations, the solutions gradually level off with a certain level of variations in the average TTD, showing the capability of the proposed method of solving the multiple work zone starting date optimization problem.

Originality/value
The proposed model can effectively identify the near-optimal solution to the long-term work zone scheduling problem with elastic demand. Sensitivity analysis of the impact of the elastic demand parameter is also conducted to show the importance of considering the impact of elastic demand parameter.

Source: Smart and Resilient Transportation
Volume: 3
Issue: 2
Publication Date: August 4, 2021
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Construction Scheduling; Mathematical Models; Traffic Delays; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute