Complementary Parametric Probit Regression and Nonparametric Classification Tree Modeling Approaches to Analyze Factors Affecting Severity of Work Zone Weather-Related Crashes
Author/Presenter: Ghasemzadeh, Ali; Ahmed, Mohamed M.Abstract:
Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weather-related crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions.
Publication Date: December 21, 2018
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Classification; Crash Analysis; Crash Causes; Lighting; Machine Learning; Mathematical Models; Traffic Control Devices; Weather Conditions; Work Zone Safety