• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • Events
  • About
  • Contact
  • Search
Publication

Detecting Safety Helmet Wearing on Construction Sites With Bounding-Box Regression and Deep Transfer Learning

Abstract:

Detecting safety helmet wearing in surveillance videos is an essential task for safety management, compliance with regulations, and reducing the death rate from construction industry accidents. However, it is much challenged by some factors like interocclusion, scale variances, perspective distortion, small object detection, and the carrier recognition of safety helmet. Traditional image‐based methods suffer from them. This article proposes a new methodology for detecting safety helmet wearing, which makes use of convolutional neural network‐based face detection and bounding‐box regression for safety helmet detection. On the one hand, the method can help to recognize the carrier of the safety helmet and detect a multiscale and small safety helmet. On the other hand, deep transfer learning based on DenseNet is introduced and applied using two different strategies, namely, object feature extractor and fine‐tuning for safety helmet recognition. To further improve the recognition accuracy, the network model with two peer DenseNet networks is trained by mutual distillation. Extensive analysis and experiments show that the novel methodology has considerable advantages in detecting safety helmet wearing compared to other state‐of‐the‐art models. The proposed model has achieved 96.2% recall, 96.2% precision, and 94.47% average detection accuracy. These results, precision‐recall (PR) curve, and receiver operating characteristic (ROC) curve demonstrate the feasibility of the new model.

Source: Computer-Aided Civil and Infrastructure Engineering
Volume: 36
Issue: 2
Publication Date: February 2021
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Detection and Identification; Hard Hats; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute