• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Hand Signal Recognition of Workers on Construction Sites Using Deep Learning Networks

Author/Presenter: Wang, Xin; Zhu, Zhenhua
Abstract:

Hand signals, as one of the common ways to communicate, are widely used on construction sites due to their simple but effective nature. However, they may not always be captured timely or interpreted correctly in construction fields, which easily leads to worker injuries/fatalities, work interruption, and stoppage, etc. This paper investigated whether construction hand signals could be captured and interpreted automatically with deep learning networks. A new data set containing 11 classes of hand signals for instructing tower crane operations is created under different scenes. The created data set is employed to compare two state-of-the-art 3D convolutional neural networks (CNNs), namely ResNeXt-101 and Res3D+ConvLSTM+MobileNet, and measure their hand signal recognition performance. The comparison results indicate that a high classification accuracy (99.0%) and a short inference time (0.21 s/gesture) could be achieved, which illustrates the feasibility of using deep learning networks to achieve hand signal recognition in construction.

Source: ASCE International Conference on Computing in Civil Engineering 2021
Publication Date: 2022
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Construction Sites; Hand Signaling; Machine Learning

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute