• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Identification and Analysis of Misclassified Work-Zone Crashes Using Text Mining Techniques

Author/Presenter: Sayed, Md Abu; Qin, Xiao; Kate, Rohit J.; Anisuzzaman, D.M.; Yu, Zeyun
Abstract:

Work zone safety management and research relies heavily on the quality of work zone crash data. However, it is possible that a police officer may misclassify a crash in structured data due to: restrictive options in the crash report; a lack of understanding about their importance; lack of time due to police officers’ work load; and ignorance of work zone as one of the crash contributing factors. Consequently, work zone crashes are under representative in crash statistics. Crash narratives contain valuable information that is not included in the structured data. The objective of this study is to develop a classifier that applies text mining techniques to quickly find missed work zone (WZ) crashes through the unstructured text saved in the crash narratives.

The study used three-year crash data from 2017 to 2019. The data from 2017 to 2018 was used as training data, and the 2019 data was used as testing data. A unigram + bigram noisy-OR classifier was developed and proven to be an efficient and effective means of classifying work zone crashes based on key information in the crash narrative. The ad-hoc analysis of misclassified work zone crashes sheds light on when, where and the plausible reasons as to why work zone crashes are more likely to be missed.

Source: Accident Analysis & Prevention
Volume: 159
Publication Date: September 2021
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Classification; Crash Analysis; Crash Causes; Crash Data; Crash Reports; Data mining; Work Zones

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute