• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Improved Support Vector Machine Models for Work Zone Crash Injury Severity Prediction and Analysis

Author/Presenter: Mokhtarimousavi, Seyedmirsajad; Anderson, Jason C.; Azizinamini, Atorod; Hadi, Mohammed
Abstract:

Work zones are a high priority issue in the field of road transportation because of their impacts on traffic safety. A better understanding of work zone crashes can help to identify the contributing factors and countermeasures to enhance roadway safety. This study investigates the prediction of work zone crash severity and the contributing factors by employing a parametric approach using the mixed logit modeling framework and a non-parametric machine learning approach using the support vector machine (SVM). The mixed logit model belongs to the class of random parameter models in which the effects of flexible variables across different observations are identified, that is, data heterogeneity is taken into account. The performance of the SVM model is enhanced by applying three metaheuristic algorithms: particle swarm optimization (PSO), harmony search (HS), and the whale optimization algorithm (WOA). Empirical findings indicate that SVM provides higher prediction accuracy and outperforms the mixed logit model. Estimation results reveal key factors that increase the likelihood of severe work zone crashes. Furthermore, the analysis illustrates the ability of the three metaheuristics to enhance the SVM and the superiority of the harmony search algorithm in improving the performance of the SVM model.

Source: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2673
Issue: 11
Publisher: Transportation Research Board
Publication Date: June 19, 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Crash Causes; Injury Severity; Machine Learning; Mathematical Models; Work Zone Safety; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute