• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Inferring Heterogeneous Treatment Effects of Work Zones on Crashes

Author/Presenter: Zhang, Zhuoran; Akinci, Burcu; Qian, Sean
Abstract:

The increasing number of work zone crashes has been a significant concern for road users, transportation agencies, and researchers. Crashes can be caused by work zones, and this effect changes across different work zone configurations, traffic volumes, roadway functional classifications, and weather conditions. This is typically represented by Crash Modification Functions (CMFunctions). However, current methods for developing work zone CMFunctions have two major limitations: (1) They focus on analyzing statistical associations and fail to mitigate the confounding bias due to possible unobservable roadway characteristics; and (2) They cannot address CMFunctions of multiple variables simultaneously, such as weather and traffic conditions, since they are represented using mixed data types (continuous and categorical) that could potentially affect the causal effect of work zones on crashes. In this study, we develop a method that utilizes causal forest with fixed-effect modeling to mitigate the confounding bias while identifying CMFunctions conditioning on various environmental characteristics, including work zone configurations, traffic volume, roadway functional classification, and weather conditions. The developed method was applied to 3378 work zones that occurred in Pennsylvania between 2015 and 2017. The results were validated via a series of robustness tests. The validations demonstrate that this method can mitigate the confounding bias and identify CMFunctions of multiple variables. The results also show that the causal effect of a work zone on crash occurrence is significantly positive () on roadways with high traffic volumes (e.g., 20,000 vehicles per day) and on medium length (e.g., 2000 to 5000 m) work zones. It appears that having medium–long (e.g., between 6000 and 8000 m) work zones or long duration (e.g., longer than 4 h) work zones do not necessarily lead to extra crashes.

Source: Accident Analysis & Prevention
Volume: 177
Publication Date: November 2022
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Crash Analysis; Crash Causes; Crash Modification Factors; Crashes; Machine Learning; Work Zone Safety; Work Zones

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute