• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Integrating Vehicle-to-Infrastructure Communication for Safer Lane Changes in Smart Work Zones

Author/Presenter: Nour, Mariam; Nour, Mayar; Zaki, Mohamed H.
Abstract:

As transportation systems evolve, ensuring safe and efficient mobility in Intelligent Transportation Systems remains a priority. Work zones, in particular, pose significant safety challenges due to lane closures, which can lead to abrupt braking and sudden lane changes. Most previous research on Connected and Autonomous Vehicles (CAVs) assumes ideal communication conditions, overlooking the effects of message loss and network unreliability. This study presents a comprehensive smart work zone (SWZ) framework that enhances lane-change safety by the integration of both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication. Sensor-equipped SWZ barrels and Roadside Units (RSUs) collect and transmit real-time hazard alerts to approaching CAVs, ensuring coverage of critical roadway segments. In this study, a co-simulation framework combining VEINS, OMNeT++, and SUMO is implemented to assess lane-change safety and communication performance under realistic network conditions. Findings indicate that higher Market Penetration Rates (MPRs) of CAVs can lead to improved lane-change safety, with time-to-collision (TTC) values shifting toward safer time ranges. While lower transmission thresholds allow more frequent communication, they contribute to earlier network congestion, whereas higher thresholds maintain efficiency despite increased packet loss at high MPRs. These insights highlight the importance of incorporating realistic communication models when evaluating traffic safety in connected vehicle environments.

Source: World Electric Vehicle Journal
Volume: 16
Issue: 4
Publication Date: April 2025
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Connected Vehicles; Intelligent Transportation Systems; Lane changing; Work Zone Safety; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute