• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Kernel-Based Traffic Sign Tracking to Improve Highway Workzone Recognition for Reliable Autonomous Driving

Author/Presenter: Lee, JongHo; Seo, Young-Woo; Zhang, Wende; Wettergreen, David
Abstract:

To be deployed in the real world, a self-driving car must be capable of responding to exceptional road conditions, such as temporary work zones, because such events can change previously known traffic rules and road geometry. To develop such a capability, we implemented a computer vision system that recognizes the bounds of highway workzones by detecting regulatory and warning workzone signs. Because it is not practical to expect perfect performance in sign recognition, we also developed a confidence-propagation method to handle potential sign recognition errors. The performance of highway workzone recognition was improved by confidence-propagation, but our approach is not easily scalable to some real-world scenarios. Instead of only propagating sign classification confidence, in this work we project the appearance information of previously detected signs onto the current frame, to constrain the region for searching. Through experiments, we show that kernel-based tracking reduced the miss and false detection rates, result in a better performance of highway workzone recognition. In this paper, we present our on-going effort to further improve the performance of our highway workzone recognition system.

Source: Proceedings of the 16th International IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, October 6-9, 2013
Publication Date: 2013
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Computer Vision; Connected Vehicles; Detection and Identification; Traffic Signs; Warning Signs; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute