• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Modeling and Predicting Stochastic Merging Behaviors at Freeway On-Ramp Bottlenecks

Author/Presenter: Sun, Jian; Zuo, Kang; Jiang, Shun; Zheng, Zuduo
Abstract:

Merging behavior is inevitable at on-ramp bottlenecks and is a significant factor in triggering traffic breakdown. In modeling merging behaviors, the gap acceptance theory is generally used. Gap acceptance theory holds that when a gap is larger than the critical gap, the vehicle will merge into the mainline. In this study, however, analyses not only focus on the accepted gaps, but also take the rejected gaps into account, and the impact on merging behavior with multi-rejected (more than once rejecting behavior) gaps was investigated; it shows that the multi-rejected gaps have a great influence on the estimation of critical gap and merging prediction. Two empirical trajectory data sets were collected and analyzed: one at Yan’an Expressway in Shanghai, China, and the other at Highway 101 in Los Angeles, USA. The study made three main contributions. First, it gives the quantitative measurement of the rejected gap which is also a detailed description of non-merging event and investigated the characteristics of the multi-rejected gaps; second, taking the multi-rejected gaps into consideration, it further expanded the concept of the “critical gap” which can be a statistic one and the distribution function of merging probability with respect to such gaps was analyzed by means of survival analysis. This way could make the full use of multi-rejected gaps and accepted gaps and reduce the sample bias, thus estimating the critical gap accurately; finally, considering multi-rejected gaps, it created logistic regression models to predict merging behavior. These models were tested using field data, and satisfactory performances were obtained.

Source: Journal of Advanced Transportation
Volume: 2018
Publication Date: 2018
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Behavior; Mathematical Models; Merging Area

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute