• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn

  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Real-Time Conflict Prediction for Large Truck Merging in Mixed Traffic at Work Zone Lane Closures

Author/Presenter: Enan, Abyad; Al Mamun, Abdullah; Comert, Gurcan; Indah, Debbie Aisiana; Mwakalonge, Judith; Apon, Amy W.; Chowdhury, Mashrur
Abstract:

Large trucks substantially contribute to work zone-related crashes, primarily due to their large size and blind spots. When approaching a work zone, large trucks often need to merge into an adjacent lane because of lane closures caused by construction activities. This study aims to enhance the safety of large truck merging maneuvers in work zones by evaluating the risk associated with merging conflicts and establishing a decision-making strategy for merging based on this risk assessment. To predict the risk of large trucks merging into a mixed traffic stream within a work zone, a Long Short-Term Memory (LSTM) neural network is employed. For a large truck intending to merge, it is critical that the immediate downstream vehicle in the target lane maintains a minimum safe gap to facilitate a safe merging process. Once a conflict-free merging opportunity is predicted, large trucks are instructed to merge in response to the lane closure. Our LSTM-based conflict prediction method is compared against baseline approaches, which include probabilistic risk-based merging, 50th percentile gap-based merging, and 85th percentile gap-based merging strategies. The results demonstrate that our method yields a lower conflict risk, as indicated by reduced Time Exposed Time-to-Collision (TET) and Time Integrated Time-to-Collision (TIT) values relative to the baseline models. Furthermore, the findings indicate that large trucks that use our method can perform early merging while still in motion, as opposed to coming to a complete stop at the end of the current lane prior to closure, which is commonly observed with the baseline approaches.

Source: arXiv
Publication Date: August 2025
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Commercial Vehicles; Lane Closure; Merging Area; Traffic Conflicts; Work Zone Safety; Work Zones

Copyright © 2026 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute