• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Saturation Flow Rate at the Work Zone–Straddled Intersections With Interweaving Movements: Lane-Based Modeling Study

Author/Presenter: Yan, Zhangcun; Zhang, Duo; Lu, Xiaozhao; Liu, Qiyuan; Wang, Yinhai; Sun, Jian
Abstract:

This study explored how the presence of work zones could influence the saturation flow rate (SFR) prevailing at an intersection. Specifically, it researched construction-ridden intersections with interweaving movements (CIWIMs) of vehicle flows that proceed across the stop line and down the connective lanes on the downstream approach to the adjacent intersection. First, image recognition and tracking algorithms were used to extract 2,545 vehicle trajectories from the video captured on-site. Then, the trajectories were manipulated based on lanes to obtain the saturated headway time of the entry-lane stop line during effective green time and the variables related to lane-change behaviors after passing the stop line (e.g., lane-change percentage, lane-change position, lorry percentage, and average passing speed). In addition, certain linear and nonlinear regression methods were employed to estimate lane-focused SFR models in a parsimonious fashion. Subsequently, the Highway Capacity Manual (HCM) model, along with Schroeder’s model, was pairwise compared with the newly proposed Box-Cox model for validation. The results indicate that the mean errors are 28.86% and 17.70% for the HCM and Schroeder’s models, respectively, while the estimation error for the Box-Cox model is merely 7.20%. This sensitivity analysis reveals that the proportion of bidirectional lane changes, spatial use rate of lane changes, and proportion of heavier vehicles significantly compromises the CIWIM-based SFR. One important finding is that the models accounting for microscopic channel-change behaviors, with higher estimation accuracy compared with existing models, can also be used for traffic simulation parameter calibration and road delay estimation to obtain higher validity and precision.

Source: Journal of Transportation Engineering, Part A: Systems
Volume: 148
Issue: 10
Publication Date: October 2022
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Intersections; Lane changing; Traffic Flow; Work Zones

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute