• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • Events
  • About
  • Contact
  • Search
Publication

Severity Modeling of Work Zone Crashes in New Jersey Using Machine Learning Models

Author/Presenter: Hasan, Ahmed Sajid; Kabir, Md Asif Bin; Jalayer, Mohammad; Das, Subasish
Abstract:

In the United States, the probability of work zone crashes has increased due to an increase in renovation works by transportation infrastructures. The severity of work zone crashes is associated with multiple contributing factors such as the roadway’s geometric design features, temporal variables, environmental conditions, types of vehicles, and driver behaviors. For this study, we acquired and analyzed three years (2016–2018) of work zone crash data from the state of New Jersey. We investigated the performance of several machine learning methods, including Support Vector Machine, Random Forest, Catboost, Light GBM, and XGBoost to predict the type of injury severity resulting from work zone crashes. To evaluate models’ performances, some statistical evaluation parameters such as accuracy, precision, and recall scores were calculated. In addition, a sensitivity analysis was conducted to assess the impact of the most influential factors in work zone-related crashes. Random Forest and Catboost outperformed the other models in terms of predicting fatal, major, and minor injuries. According to the sensitivity analysis, crash type and speed limit were the most significantly associated variables with crash severity. The findings of this study are expected to facilitate the identification of appropriate countermeasures for reducing the severity of work zone crashes.

Source: Journal of Transportation Safety and Security
Publication Date: July 18, 2022
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Crash Analysis; Crash Causes; Injury Severity; Machine Learning; Work Zone Safety; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute