• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • Events
  • About
  • Contact
  • Search
Publication

Temporary Traffic Control Device Detection for Road Construction Projects Using Deep Learning Application

Author/Presenter: Seo, Sungchul; Chen, Donghui; Kim, Kwangcheol; Kang, Kyubyung; Koo, Dan; Chae, Myungjin; Park, Hyung Keun
Abstract:

Traffic control devices in road construction zones play important roles, which (1) provide critical traffic-related information for the drivers, (2) prevent potential crashes near work zones, and (3) protect work crews’ safety. Due to the number of devices in each site, transportation agencies have faced challenges in timely and frequently inspecting traffic control devices, including temporary devices. Deep learning applications can support these inspection processes. The first step of the inspection using deep learning is recognizing traffic control devices in the work zone. This study collected road images using vehicle-mounted cameras from various illuminance and weather conditions. Then, the study (1) labeled eight classes of temporary traffic control devices (TTCDs), (2) modified and trained a machine-learning model using the YOLOv3 algorithm, and (3) tested the detection outcomes of various TTCDs. The key finding shows that the proposed model recognized more than 98% of the temporary traffic signs correctly and approximately 81% of temporary traffic control devices correctly. The construction barricade had the lowest mean Average Precision (50%) out of eight classes. The outcomes can be used as the first step of autonomous safety inspections for road construction projects.

Source: Construction Research Congress 2022
Publication Date: March 2022
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Machine Learning; Temporary Traffic Control; Traffic Control Devices; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute