• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Traffic Flow Forecasting for Urban Work Zones

Author/Presenter: Hou, Yi; Edara, Praveen; Sun, Carlos
Abstract:

None of numerous existing traffic flow forecasting models focus on work zones. Work zone events create conditions that are different from both normal operating conditions and incident conditions. In this paper, four models were developed for forecasting traffic flow for planned work zone events. The four models are random forest, regression tree, multilayer feedforward neural network, and nonparametric regression. Both long-term and short-term traffic flow forecasting applications were investigated. Long-term forecast involves forecasting 24 h in advance using historical traffic data, and short-term forecasts involves forecasting 1 h and 45, 30, and 15 min in advance using real-time temporal and spatial traffic data. Models were evaluated using data from work zone events on two types of roadways, a freeway, i.e., I-270, and a signalized arterial, i.e., MO-141, in St. Louis, MO, USA. The results showed that the random forest model yielded the most accurate long-term and short-term work zone traffic flow forecasts. For freeway data, the most influential variables were the latest interval’s look-back traffic flows at the upstream, downstream, and current locations. For arterial data, the most influential variables were the traffic flows from the three look-back intervals at the current location only.

Source: IEEE Transactions on Intelligent Transportation Systems
Volume: PP
Issue: 99
Publication Date: 2014
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Intelligent Transportation Systems; Traffic Flow; Urban Highways; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute