• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Using Deep Neural Networks and Big Data to Predict Microscopic Travel Time in Work Zones

Author/Presenter: Morshedzadeh, Yeganeh; Gargoum, Suliman; Gargoum, Ali
Abstract:

Traffic management in work zones is a challenging task that requires a balance between creating a safe environment for workers and minimizing traffic delays. Accurately predicting travel times through work zones is essential for dynamic traffic management and reducing congestion. However, complex interrupted traffic patterns in work zones (also known as construction zones) make this challenging compared with regular traffic congestion and free-flow conditions. To address this complexity, the paper develops a data-driven deep feed-forward artificial neural network to forecast under-construction travel times in work zones using an integrated data set of almost half a million observations. The variables considered in the neural network include the work zone characteristics, road design features, weather information, and traffic flow information. The raw data set comprised approximately 15 million travel time observations collected at 674 work zones. After cleaning and preprocessing the data and applying feature engineering techniques, the raw data set was reduced to 81 work zones spread along a 700 km corridor between the western borders of Alberta and Vancouver, British Columbia. The data were split into training and test data using a 90:10 ratio. Training data were used to develop a 27-input neural network with four hidden layers. After validating the test data, the neural network achieved a root mean squared error of 0.150 min and an R-squared score of 0.945, indicating a high accuracy level in estimating the under-construction travel time.

Source: Transportation Research Record: Journal of the Transportation Research Board
Publisher: Transportation Research Board
Publication Date: March 27, 2024
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Data mining; Neural Networks; Traffic Flow; Travel Time; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute