• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Workzone Lighting and Glare on Nighttime Construction and Maintenance Activities

Author/Presenter: Nafakh, Abdullah Jalal; Davila, Franklin Vargas; Zhang, Yunchang; Fricker, Jon D.; Abraham, Dulcy M.
Abstract:

Over the last two decades, an increasing number of highway construction and maintenance projects in the United States have been completed at night to avoid or alleviate traffic congestion delays. Working at night entails several advantages, including lower traffic volumes, less impact on local businesses, cooler temperatures for equipment and material, and fewer overall crashes. Although nighttime roadway operations may minimize traffic disruptions, there are several safety concerns about passing motorists and workers in the nighttime work zone. For instance, improper lighting arrangements or excessive lighting levels at the job site could cause harmful levels of glare for the traveling public and workers, which can lead to an increased level of hazards and crashes in the vicinity of the work zone. To address the issue of glare, this report focuses on determining and evaluating disability glare on nighttime work zones in order to develop appropriate strategies for improving the safety of workers and motorists. Disability glare is the glare that impairs our vision of objects without necessarily causing discomfort, and it can be evaluated using the veiling luminance ratio (VL ratio). In this study, disability glare values were determined by using lighting data (vertical illuminance and pavement luminance measurements) from the testing of 49 lighting arrangements. The glare assessment analyzed the effects of the lighting system setup’s parameters, such as the mounting height, power output, rotation angle, and aiming angle of luminaires on the veiling luminance ratio values (which is a criterion for limiting disability glare). The study revealed the following key findings: (1) an increase in mounting heights of both balloon lights and light towers resulted in lower disability glare levels; (2) compared to the “perpendicular” and “away” orientations, orienting the light towers “towards” the traffic (45 degrees) significantly increases the disability glare levels of the lighting arrangement; and (3) increasing the tilt angles of portable light tower luminaries resulted in an increase in disability glare levels.

Publisher: Purdue University
Publication Date: June 2022
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Glare; Lighting; Lighting Systems; Night; Work Zone Safety; Work Zones

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute