• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

A Comparative Study of Machine Learning Classification for Color-Based Safety Vest Detection on Construction-Site Images

Author/Presenter: Seong, Hyeonwoo; Son, Hyojoo; Kim, Changwan
Abstract:

Detecting the safety vests is an important foundation for various applications in safety management and productivity measurement. The fluorescent yellow-green color and fluorescent orange-red color of safety vests are generally considered as the most distinctive colors which represent workers in construction-site images. The objective of this study is to provide an evaluation of the safety vest detection using color information in construction-site images. The data sets of two colors of safety vests and the background were generated and used in this study. A comparative analysis of combinations of five color spaces (RGB, nRGB, HSV, Lab, and YCbCr) and six classifiers (ANN, C4.5, KNN, LR, NB, and SVM) was conducted. The performance of each combination was assessed in terms of the precision, recall, and F-measure. Moreover, an evaluation of the effects of color space conversion and the absence of luminance components on the detection performance was conducted. The comparison results showed that C4.5 classifier combined with YCbCr and SVM classifier combined with Lab, respectively, outperformed other combinations on each data set of safety vest colors. Furthermore, RGB color space transformation into non-RGB color spaces enhanced the classification performance. The evaluation also showed that the removal of luminance components did not help to improve the performance.

Source: KSCE Journal of Civil Engineering
Publication Date: September 2018
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Classification; Color; Evaluation and Assessment; High Visibility Clothing; Machine Learning; Mathematical Models; Measures of Effectiveness; Visibility; Worker Safety

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute