Augmented Reality Warnings in Roadway Work Zones: Evaluating the Effect of Modality on Worker Reaction Times
Author/Presenter: Sabeti, Sepehr; Banani Ardecani, Fatemeh; Shoghl, OmidrezaAbstract:
Given the aging highway infrastructure requiring extensive rebuilding and enhancements, and the consequent rise in the number of work zones, there is an urgent need to develop advanced safety systems to protect workers. While Augmented Reality (AR) holds significant potential for delivering warnings to workers, its integration into roadway work zones remains relatively unexplored. The primary objective of this study is to improve safety measures within roadway work zones by conducting an extensive analysis of how different combinations of multimodal AR warnings influence the reaction times of workers. This paper addresses this gap through a series of experiments that aim to replicate the distinctive conditions of roadway work zones, both in real-world and virtual reality environments. The researchers’ approach comprises three key components: an advanced AR system prototype, a VR simulation of AR functionality within the work zone environment, and the Wizard of Oz technique to synchronize user experiences across experiments. To assess reaction times, the researchers leverage both the simple reaction time (SRT) technique and an innovative vision-based metric that utilizes real-time pose estimation. By conducting five experiments in controlled outdoor work zones and indoor VR settings, this study provides valuable information on how various multimodal AR warnings impact workers reaction times. Furthermore, the findings reveal the disparities in reaction times between VR simulations and real-world scenarios, thereby gauging VR’s capability to mirror the dynamics of roadway work zones. Furthermore, the results substantiate the potential and reliability of vision-based reaction time measurements. These insights resonate well with those derived using the SRT technique, underscoring the viability of this approach for tangible real-world uses.
Publication Date: March 2024
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Virtual Reality; Warning Systems; Work Zones; Worker Safety