• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Estimation of Saturation Headway in Work Zones on Urban Streets

Author/Presenter: Hajbabaie, Ali; Kim, SangKey; Schroeder, Bastian J.; Aghdashi, Seyedbehzad; Rouphail, Nagui M.; Tabrizi, Kambiz
Abstract:

Work zones and lane closures on urban arterials can cause significant disruptions to the traveling public, and methods are increasingly needed to estimate the reductions to saturation flow rates that result from work zones at signalized intersections. A set of statistical models that estimate saturation headways as a function of the presence and configuration of the work zone on signalized arterial streets is presented. More than 10,000 individual vehicular headway observations were collected from video observations in and after work zones at six study sites in North Carolina. Conventional multiple-regression and path-based-regression models (structural equation model) were used to develop the saturation headway models. Three models are provided at different aggregation levels of the collected data with identical work zone configurations. The models developed at cycle-length, 15-min, and full aggregation produced adjusted R-squared values of .3259, .7209, and .895, respectively. The proposed model incorporates the effects of lane configuration, pavement condition, turning percentage from shared lanes, work intensity, and number of closed exclusive turning lanes. Based on path analysis, the structural equation model satisfies all the rule-of-thumb criteria for goodness-of-fit indices. The model uses Highway Capacity Manual default values for turning-vehicle headway effect as its intercept coefficient value.

Source: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2615
Issue: 1
Publisher: Transportation Research Board
Publication Date: 2017
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Lane Closure; Mathematical Models; Signalized intersections; Urban Highways; Work Zone Capacity; Work Zones

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute