• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • Events
  • About
  • Contact
  • Search
Publication

Human-Object Interaction Recognition for Automatic Construction Site Safety Inspection

Author/Presenter: Tang, Shuai; Roberts, Dominic; Golparvar-Fard, Mani
Abstract:

Today, computer vision object detection methods are used for safety inspections from site videos and images. These methods detect bounding boxes and use hand-made rules to enable personal protective equipment compliance checks. This paper presents a new method to improve the breadth and depth of vision-based safety compliance checking by explicitly classifying worker-tool interactions. A detection model is trained on a newly constructed image dataset for construction sites, achieving 52.9% average mean precision for 10 object categories and 89.4% average precision for detecting workers. Using this detector and new dataset, the proposed human-object interaction recognition model achieved 79.78% precision and 77.64% recall for hard hat checking; 79.11% precision and 75.29% recall for safety coloring checking. The new model also verifies hand protection for workers when tools are being used with 66.2% precision and 64.86% recall. The proposed model is superior in these checking tasks when compared with post-processing detected objects with hand-made rules, or applying detected objects only.

Source: Automation in Construction
Volume: 120
Publication Date: December 2020
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Computer Vision; Construction Safety; Detection and Identification; Inspection; Personal Protective Equipment; Worker Safety

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute