• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Improving Dynamic Proximity Sensing and Processing for Smart Work-Zone Safety

Author/Presenter: Park, JeeWoong, Yang, Xiaoyu; Cho, Yong K.; Seo, Jongwon
Abstract:

Equipment/vehicles striking workers is one of the most frequent accidents that occur in roadway workzones. As a means of prevention, a number of active technologies have been developed to provide proximity sensing and alerts for workers and equipment operators. However, most of these systems are based on the distance/proximity level between workers and equipment and neglect the variations caused by different settings and environmental conditions, such as equipment types and approaching speeds, which can result in inconsistency and delay of the systems. As of yet, previous research has insufficiently investigated these issues. This research addresses the issues by utilizing the Bluetooth Low Energy (BLE)-based proximity sensing and alert system developed by the authors. This paper discusses the development and assessment of parameter adjustment and adaptive signal processing (ASP) methods. The research conducted field trials in various dynamic conditions and settings to assess the performance of the system. The test results showed that the parameter adjustment function reduced the inconsistency of the alert distances resulting from different types of equipment, and that the ASP method reduced the time delay resulting from high approaching speeds. The developed proximity safety alerts system provides stakeholders with better understanding of dynamic spatial relationships among equipment, operator, workers, and a surrounding work environment; thus, improving construction work zone safety.

Source: Automation in Construction
Publication Date: December 2017
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Bluetooth Technology; Warning Systems; Work Zone Safety; Worker Safety

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute