• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Random Finite Set-Based Anomaly Detection for Safety Monitoring in Construction Sites

Author/Presenter: Kamoona, Ammar Mansoor; Gostar, Amirali Khodadadian; Tennakoon, Ruwan; Bab-Hadiashar, Alireza; Accadia, David; Thorpe, Joshua; Hoseinnezha, Reza
Abstract:

Low visibility hazard detection in construction sites is a crucial task for prevention of fatal accidents. Manual monitoring of construction workers to ensure they follow the safety rules (e.g., wear high-visibility vests) is a cumbersome task and practically infeasible in many applications. Therefore, an automated monitoring system is of both fundamental and practical interest. This paper proposes an intelligent solution that uses live camera images to detect workers who breach safety rules by not wearing high-visibility vests. The proposed solution is formulated in the form of an anomaly detection algorithm developed in the random finite set (RFS) framework. The proposed system is comprised of three steps: 1) applying a deep neural network to extract people in the image; 2) extracting particularly engineered features from each blob returned by the deep neural network; and 3) applying the RFS-based anomaly detection algorithm to each set of detected features. The experimental results demonstrate that in terms of F1-score, the proposed solution (as the combination of the newly engineered features and RFS-based anomaly detection algorithm) significantly outperforms various combinations of common and the state-of-the-art features and anomaly detection algorithms employed in machine vision applications.

Source: IEEE Access
Volume: 7
Publication Date: July 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Construction Safety; Video Imaging Detectors; Worker Safety

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute