• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Newsletter
  • Contact
  • X
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Work Zone Safety and MobilityTransportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Online Courses
    • FHWA Safety Grant Products
    • Toolboxes
    • Flagger
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
  • Public Awareness
  • About
  • Events
  • Contact
  • Search
Publication

Design and Evaluation of a Connected Work Zone Hazard Detection and Communication System for Connected and Automated Vehicles (CAVs)

Author/Presenter: Mollenhauer, Michael; White, Elizabeth; Roofigari-Esfahan, Nazila
Abstract:

Roadside work zones (WZs) present imminent safety hazards for roadway workers as well as passing motorists. In 2016, 764 fatalities occurred in WZs in the United States due to motor vehicle traffic crashes, which are the second most common cause of worker fatalities. The advent of connected and connected automated vehicles (CVs/CAVs) is driving WZsafety practitioners and vehicle designers towards implementing solutions that will more accurately describe activity in WZs to help identify and communicate imminent safety hazards that elevate crash risks. A viable solution to this problem is to accurately localize, monitor, and predict WZ actors’ collision threats based on their movements and activities. This information along with CV/CAVs’ trajectories can be used to detect potential proximity conflicts and provide advanced warnings to workers, passing drivers, and CAV control systems. This project aims to address WZ safety by delivering a real-time threat detection and warning algorithm that can be used in wearable WZcommunication solutions in conjunction with CVs/CAVs. As a result, this research provides a key element required to significantly improve the safety conditions of roadside WZs through prompt detection and communication of hazardous situations to workers and CVs/CAVs alike.

Publisher: Virginia Tech Transportation Institute
Publication Date: August 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Connected Vehicles; Detection and Identification; Hazards; Sensors; Vehicle Trajectories; Work Zones; Worker Safety

Copyright © 2025 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute