• Skip to primary navigation
  • Skip to main content
Logo

Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • About
  • Join Listserv
  • Contact
  • Twitter
  • Facebook
  • LinkedIn
  • Work Zone Data
    • At a Glance
    • National & State Traffic Data
    • Work Zone Traffic Crash Trends and Statistics
    • Worker Fatalities and Injuries at Road Construction Sites
  • Topics of Interest
    • Commercial Motor Vehicle Safety
    • Smart Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Worker Safety and Welfare
    • Project Coordination in Work Zones
  • Training
    • Flagger
    • Online Courses
    • Toolboxes
    • FHWA Safety Grant Products
    • Certification and
      Accreditation
  • Work Zone Devices
  • Laws, Standards & Policies
    • COVID-19 Guidance
  • Public Awareness
  • Events
  • About
  • Listserv
  • Contact
  • Search
Publication

Human Dynamics in Near-Miss Accidents Resulting from Unsafe Behavior of Construction Workers

Author/Presenter: Zhou, Cheng; Chen, Rui; Jiang, Shuangnan; Zhou, Ying; Ding, Lieyun; Skibniewski, Miroslaw J.; Lin, Xinggui
Abstract:

Near misses, as a common result of unsafe behavior and/or unsafe conditions, are precursors of accidents in the construction industry. Given the complexity of near misses, seeking regularities in time series of near misses is almost impossible. We present a human dynamics model based on near-miss data to reveal common dynamic features of near-miss accidents that result from unsafe behavior of construction workers. To validate the model, we conducted an empirical case study based on unsafe behavior related to near misses from a database in the Early Warning System for Safety Risk Management in Wuhan Metro Construction, created by the Huazhong University of Science and Technology. Heavy-tailed distribution and approximate power-law distribution are observed in the inter-event time series of near misses, rather than being randomly distributed in time in current models. The strong burst and weak memory phenomena were observed in the whole, annual, and categorized inter-event time distributions of near misses. Moreover, the results showed a non-trivial, monotonous increase of the power-law exponent with the activity of different construction site in near misses, thus indicating that heterogeneity and complexity exist in general. We defined a new safety performance metric that is more reliable than the number of near misses and validated this performance metric by using expert assessment results of metro construction sites. Furthermore, we proposed further research prospects on human dynamics in construction safety behavior.

Source: Physica A: Statistical Mechanics and its Applications
Volume: 530
Publication Date: 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Construction Safety; Crash Causes; Human Characteristics; Worker Safety

Copyright © 2023 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Privacy Policy · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute